viernes, 8 de julio de 2016

L_P Amparo Misdenia López Samayoa

LÓGICA PROPOSICIONAL


Es un sistema formal cuyos elementos más simples representan proposiciones, y cuyas constantes lógicas, llamadas conectivas, representan operaciones sobre proposiciones, capaces de formar otras proposiciones de mayor complejidad.

La lógica proposicional trata con sistemas lógicos que carecen de cuantificadores, o variables interpretables como entidades. En lógica proposicional si bien no hay signos para variables de tipo entidad, sí existen signos para variables proposicionales (es decir, que pueden ser interpretadas como proposiciones con un valor de verdad de definido), de ahí el nombre proposicional. La lógica proposicional incluye además de variables interpretables como proposiciones simples signos para conectivas lógicas, por lo que dentro de este tipo de lógica puede analizarse la inferencia lógica de proposiciones a partir de proposiciones, pero sin tener en cuenta la estructura interna de las proposiciones más simples.


CONECTIVAS LÓGICAS

A continuación hay una tabla que despliega todas las conectivas lógicas que ocupan a la lógica proposicional, incluyendo ejemplos de su uso en el lenguaje natural y los símbolos que se utilizan para representarlas en lenguaje formal.
ConectivaExpresión en el
lenguaje natural
EjemploSímbolo en
este artículo
Símbolos
alternativos
NegaciónnoNo está lloviendo.
ConjunciónyEstá lloviendo y está nublado. 
DisyunciónoEstá lloviendo o está soleado.
Condicional materialsi... entoncesSi está soleado, entonces es de día.
Bicondicionalsi y sólo siEstá nublado si y sólo si hay nubes visibles.
Negación conjuntani... niNi está soleado ni está nublado.
Disyunción excluyenteo bien... o bienO bien está soleado, o bien está nublado.
En la lógica proposicional, las conectivas lógicas se tratan como funciones de verdad. Es decir, como funciones que toman conjuntos de valores de verdad y devuelven valores de verdad. Por ejemplo, la conectiva lógica «no» es una función que si toma el valor de verdad V, devuelve F, y si toma el valor de verdad F, devuelve V. Por lo tanto, si se aplica la función «no» a una letra que represente una proposición falsa, el resultado será algo verdadero. Si es falso que «está lloviendo», entonces será verdadero que «no está lloviendo».
El significado de las conectivas lógicas no es nada más que su comportamiento como funciones de verdad. Cada conectiva lógica se distingue de las otras por los valores de verdad que devuelve frente a las distintas combinaciones de valores de verdad que puede recibir. Esto quiere decir que el significado de cada conectiva lógica puede ilustrarse mediante una tabla que despliegue los valores de verdad que la función devuelve frente a todas las combinaciones posibles de valores de verdad que puede recibir.
NegaciónConjunciónDisyunciónCondicionalBicondicional

TABLAS DE VERDAD

La tabla de verdad de una fórmula es una tabla en la que se presentan todas las posibles interpretaciones de las variables proposicionales que constituye la fórmula y el valor de verdad de la fórmula completa para cada interpretación. Por ejemplo, la tabla de verdad para la fórmula  sería:

Como se ve, esta fórmula tiene 2n interpretaciones posibles —una por cada línea de la tabla—, donde n es el número de variables proposicionales (en este caso 3, es decir p, q, r) , y resulta ser una tautología, es decir que bajo todas las interpretaciones posibles de las variables proposicionales, el valor de verdad de la fórmula completa termina siendo V.
EJEMPLO:
Aplicación de la tabla de verdad:

LEYES

        NOMBRE                                                             EQUIVALENCIA


LEYES DE MORGAN
En lógica proposicional y álgebra de Boole, las leyes de De Morgan son un par de reglas de transformación que son ambas reglas de inferencia válidas. Las normas permiten la expresión de las conjunciones y disyunciones puramente en términos de sí vía negación.
Las reglas se pueden expresar en español como:
La negación de la conjunción es la disyunción de las negaciones.
La negación de la disyunción es la conjunción de las negaciones.
o informalmente como:
"no (A y B)" es lo mismo que "(no A) o (no B)"

y también,


"no (A o B)" es lo mismo que "(no A) y (no B)"
Las reglas pueden ser expresadas en un lenguaje formal con dos proposiciones P y Q, de esta forma:
donde:
  • ¬ es el operador de negación (NO)
  •  es el operador de conjunción (Y)
  •  es el operador de disyunción (O)
  • ⇔ es un símbolo meta-lógico que significa "puede ser reemplazado en una prueba lógica"

Entre la aplicaciones de las normas se incluyen la simplificación de expresiones lógicas en programas de computación y diseño de circuitos digitales. Las leyes de De Morgan son un ejemplo de concepto más general de dualidad matemática. 

NOTACIÓN FORMAL
La regla de la negación de la conjunción se puede escribir en la subsiguiente notación:
La negación de la regla de disyunción se puede escribir como:
En forma de regla: negación de la conjunción
negación de la disyunción
y se expresa como una tautología verdad-funcional o teorema de lógica proposicional:
donde , y  son proposiciones expresadas en algún sistema formal.

Forma de sustitución

Normalmente, las leyes de De Morgan se muestran en forma compacta como se muestran arriba, con la negación de la salida de la izquierda y la de las entradas a la derecha.

Conjunción

La conjunción de dos preposiciones es equivalente a la negación de la disyunción de los términos negados

Disyunción

La disyunción de dos preposiciones es equivalente a la negación de la conjunción de la negación de P y la negación de Q

          Negaciones de operadores en las conjunciones y disyunciones

Conjunción con P negada
La conjunción de la proposición P negada y la preposición Q es equivalente a la negación de la disyunción de P y la negación de Q
Conjunción con Q negada
La conjunción de la proposición P y la preposición Q negada es equivalente a la negación de la disyunción de la negación de P y Q
Conjunción tanto de P como de Q negadas
La conjunción de la proposición P y Q negadas es equivalente a la negación de la disyunción de P y Q
Disyunción con P negada
La disyunción de la proposición P negada y la preposición Q es equivalente a la negación de la conjunción de P y la negación de Q
Esta forma también es equivalente al implica de la negación del término P y la negación del término Q
Disyunción con Q negada
La disyunción de la proposición P y la preposición Q negada es equivalente a la negación de la disyunción de la negación de P y Q
Disyunción tanto de P como de Q negadas
La disyunción de la proposición P y Q negadas es equivalente a la conjunción de la disyunción de P y Q
Esto pone de relieve la necesidad de invertir tanto en las entradas como en las salidas, así como también cambiar el operador, haciendo una sustitución.

No hay comentarios.:

Publicar un comentario